Music Source Separation via Sparsified Dictionaries vs. Parametric Models

نویسندگان

  • Mahdi Triki
  • Dirk T.M. Slock
چکیده

In the framework of audio signal analysis, there have been recent significant advances in two directions: sparse and structured representation. In fact, sparse decompositions of audio signals are shown to be effective, and appear to be extremely useful in many signal processing applications: compression, source separation, noise reduction... A second point of view tries to take advantage of the harmonic structure of the audio signal. It models a note signal as a periodic signal with (slow) global variation of amplitude (reflecting attack, sustain, decay) and frequency (limited time warping). In this paper, we compare the two approaches through experiments involving various audio signals. We consider particularly application of the two approaches to noise reduction, and underdetermined Blind Source Separation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-channel Image Source Separation by Dictionary Update Method

In real world, a large set of mixed signals are available from which each source signal need to be recovered and this problem can be addressed with adaptive dictionary method. In the case of multichannel observations sparsity found to be very useful for source separation. The problem exist is that in most cases the sources are not sparsified in their domain and it will become necessary to spars...

متن کامل

Genre Specific Dictionaries for Harmonic/Percussive Source Separation

Blind source separation usually obtains limited performance on real and polyphonic music signals. To overcome these limitations, it is common to rely on prior knowledge under the form of side information as in Informed Source Separation or on machine learning paradigms applied on a training database. In the context of source separation based on factorization models such as the Non-negative Matr...

متن کامل

Block Nonnegative Matrix Factorization for Single Channel Source Separation

Nonnegative Matrix Factorization (NMF) [1, 2] has been widely used in audio research, e.g. automatic music transcription [3], musical source separation [4], and speech enhancement [5]. The key strategy for applying NMF to audio-related tasks is to find a lower rank representation of the Short Time Fourier Transformed (STFT) input signal and use the basis vectors as dictionaries. For example, in...

متن کامل

Non-negative Hidden Markov Modeling of Audio with Application to Source Separation

In recent years, there has been a great deal of work in modeling audio using non-negative matrix factorization and its probabilistic counterparts as they yield rich models that are very useful for source separation and automatic music transcription. Given a sound source, these algorithms learn a dictionary of spectral vectors to best explain it. This dictionary is however learned in a manner th...

متن کامل

Score-Informed Source Separation for Music Signals

In recent years, the processing of audio recordings by exploiting additional musical knowledge has turned out to be a promising research direction. In particular, additional note information as specified by a musical score or a MIDI file has been employed to support various audio processing tasks such as source separation, audio parameterization, performance analysis, or instrument equalization...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006